JOHNSON VILLAGE WATER DEPT - VT0005156

Consumer Confidence Report – 2017

This report is a snapshot of the quality of the water that we provided last year. Included are the details about where your water comes from, what it contains, and how it compares to Environmental Protection Agency (EPA) and state standards. We are committed to providing you with information because informed customers are our best allies. This report is designed to inform you about the quality water and services we deliver to you every day. To learn more, please attend any of our regularly scheduled meetings which are held: **On the second Monday of every month at 6:00 p.m. at the Municipal Building.** The person who can answer questions about this report is: Thomas Elwood Telephone: 802-635-2951.

Water Source Information Your water comes from:

Source Name	Source Water Type
Nadeau WELL	Ground Water
Osgood WELL	Ground Water

The State of Vermont Water Supply Rule requires Public Community Water Systems to develop a Source Protection Plan. This plan delineates a source protection area for our system and identifies potential and actual sources of contamination. Please contact us if you are interested in reviewing the plan.

Drinking Water Contaminants

The sources of drinking water (both tap water and bottled water) include surface water (streams, lakes) and ground water (wells, springs). As water travels over the land's surface or through the ground, it dissolves naturally-occurring minerals. It also picks up substances resulting from the presence of animals and human activity. Some "contaminants" may be harmful. Others, such as iron and sulfur, are not harmful. Public water systems treat water to remove contaminants, if any are present.

In order to ensure that your water is safe to drink, we test it regularly according to regulations established by the U.S.

Environmental Protection Agency and the State of Vermont. These regulations limit the amount of various contaminants:

<u>Microbial contaminants</u>, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife

<u>Inorganic contaminants</u>, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

<u>Pesticides and herbicides</u>, may come from a variety of sources such as storm water run-off, agriculture, and residential users. <u>Radioactive contaminants</u>, which can be naturally occurring or the result of mining activity

<u>Organic contaminants</u>, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also come from gas stations, urban storm water run-off, and septic systems.

Water Quality Data

The table below lists all the drinking water contaminants that we detected during the past year. It also includes the date and results of any contaminants that we detected within the past five years if tested less than once a year. The presence of these contaminants in the water does not necessarily show that the water poses a health risk.

<u>Terms and abbreviations</u> - In this table you may find terms you might not be familiar with. To help you better understand these terms we have provided the following definitions:

<u>Action Level (AL):</u> The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

<u>Level 1 Assessment:</u> A Level 1 Assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

<u>Level 2 Assessment:</u> A Level 2 Assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

<u>Locational Running Annual Average (LRAA):</u> The average of sample analytical results for samples taken at a particular monitoring location during four consecutive calendar quarters.

<u>Maximum Contamination Level Goal (MCLG)</u>: The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to human health. MCLG's allow for a margin of safety.

<u>Maximum Contamination Level (MCL)</u>: The "Maximum Allowed" MCL is the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology. <u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of disinfectants in controlling microbial contaminants.

<u>Maximum Residual Disinfectant Level (MRDL):</u> The highest level of a disinfectant allowed in drinking water. Addition a disinfectant may help control microbial contaminants.

<u>90th Percentile:</u> Ninety percent of the samples are below the action level. (Nine of ten sites sampled were at or below this level).

<u>Treatment Technique (TT):</u> A required process intended to reduce the level of a contaminant in drinking water.

Parts per million (ppm) or Milligrams per liter (mg/l): (one penny in ten thousand dollars)

Parts per billion (ppb) or Micrograms per liter (µg/l): (one penny in ten million dollars)

Picocuries per liter(pCi/L): a measure of radioactivity in water

Nephelometric Turbidity Unit (NTU): NTU is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

<u>Running Annual Average (RAA):</u> The average of 4 consecutive quarters (when on quarterly monitoring); values in table represent the highest RAA for the year

Detected Contaminants JOHNSON VILLAGE WATER DEPT

Disinfection Residual	RAA	Range	<u>Unit</u>	MRDL	MRDLG	Typical Source
Chlorine	0.543	$\overline{0.250} - 0.870$	mg/l	4.0	$\overline{4.0}$	Water additive to control microbes

Microbiological	Result	MCL*	MCLG	Typical Source			
No Detected Results were Found in the Calendar Year of 2016							
*As of April 1, 2016, there is no MCI for total coliform. Instead more than 1 positive monthly sample requires a treatment							

Chemical Contaminar	nts		lection Date	High Val		Ran	ge l	e Unit		CL	CL MCL		Typical Source			
Hardness (as CACO3)	S	6/7	/2012	17	0	170 170	1	opm								
NITRATE		2/18	3/2016	1.	7	0 - 1	լ.7 լ	opm	10	0	10		Runoff from fertilizer use; Leaching septic tanks, sewage; Erosion of nat deposits		•	
Radionuclio	des		Colle Da	ction ate	High Va		Ra	nge	Uni	it	MCL	M	MCLG Typical Source		ce	
COMBINEI RADIUM)		3/20/	2014	0.8	89		544- 89	pCi/	/L	5		0	Erosion of natural d		deposits
GROSS ALI	РНА		2/14/	2013	0.6	542		542- 542	pCi/	/L	15		0	Er	Erosion of natural deposits	
RADIUM-2	26		3/20/	2014	0.1	.74		- 174	pCi/L 5			0	Er	Erosion of natural deposits		
RADIUM-2	28		3/20/	2014	0.8	89		37 - pCi/L 5		5		0	Er	Erosion of natural deposits		
Disinfection	n ByPro	duct	S		toring riod	L	RAA	F	Range	ange Unit M		MC	CL	MCLG	Typical	Source
Total Triha	lometha	anes		20)15		4	3.	9 – 3.9 ppb		80	0	0	By-product water chlo		
Lead and Copper	Dat	te	90 Perce		Ran	ge	Unit	Al	L*		ites er AL	Typical Source				
COPPER	2012 201		0.1	14	0.023		ppm	1.	.3	0			lumbi tural c	ng system	household as; Erosion of Leaching from rvatives	
LEAD	2012		2	2	0 -	7	ppb	1	5 0		pl	Cor	rosion of	household as; Erosion of		

^{*}The lead and copper AL (Action Level) exceedance is based on the 90th percentile concentration, not the highest detected result.

natural deposits

Violation(s) that occurred during the year

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. The below table lists any drinking water violations we incurred during 2016. A failure to perform required monitoring means we cannot be sure of the quality of our water during that time.

Туре	Category	Analyte	Compliance Period
MONITORING, ROUTINE (DBP),	Failure to Monitor	Disinfection Byproducts	07/01/16 - 09/30/16
MAJOR			

Additional Information (including steps taken to correct any violation listed above)

To prevent any failure to monitor violations in the future, the Village has introduced redundancy into its processes and designated multiple staff members as parties responsible for verifying all required monitoring has taken place.

Health information regarding drinking water

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants, can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from EPA's Safe Drinking Water Hotline (1-800-426-4791).

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Safe Drinking Water Hotline.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. JOHNSON VILLAGE WATER DEPT is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Public Notice – Uncorrected Significant Deficiencies: The system is required to inform the public of any significant deficiencies identified during a sanitary survey conducted by the Drinking Water and Groundwater Protection Division that have not yet been corrected. For more information please refer to the schedule for compliance in the system's Operating Permit.

	Date Identified	Deficiency	Facility
--	-----------------	------------	----------